Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(22): 15441-15448, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741954

RESUMO

Calcium alginate elastic capsules with a core-shell structure are versatile spherical solid beads that can be produced in large quantities using various techniques. This type of capsule is a promising platform for cell culture applications, owing to its mechanical elasticity and transparency. This paper reports the production of calcium alginate capsules with high consistency, and for the first time, demonstrates the feasibility of the capsules for microalgal cultivation. Cell growth analysis reveals that the vibrationally-shaken calcium alginate elastic capsule platform yielded a higher maximum cell number (4.86 × 108 cells per mL) during the cultivation period than the control solution platforms. Aquafeed and food supplements for humans are the targeted applications of this novel platform.

2.
Biomed Microdevices ; 26(2): 24, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709370

RESUMO

We report the fabrication and characterisation of magnetic liquid beads with a solid magnetic shell and liquid core using microfluidic techniques. The liquid beads consist of a fluorinated oil core and a polymer shell with magnetite particles. The beads are generated in a flow-focusing polydimethylsiloxane (PDMS) device and cured by photo polymerisation. We investigated the response of the liquid beads to an external magnetic field by characterising their motion towards a permanent magnet. Magnetic sorting of liquid beads in a channel was achieved with 90% efficiency. The results show that the liquid beads can be controlled magnetically and have potential applications in digital microfluidics including nucleic acid amplification, drug delivery, cell culture, sensing, and tissue engineering. The present paper also discusses the magnetophoretic behaviour of the liquid bead by varying its mass and magnetite concentration in the shell. We also demonstrated the two-dimensional self-assembly of magnetic liquid beads for potential use in digital polymerase chain reaction and digital loop mediated isothermal amplification.


Assuntos
Dimetilpolisiloxanos , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas/instrumentação , Campos Magnéticos , Microesferas
3.
Small ; : e2303435, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37292037

RESUMO

Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.

4.
Lab Chip ; 23(15): 3353-3360, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37313835

RESUMO

Digital droplet reactors have become a valuable tool for the analysis of single cells, organisms, or molecules by discretising reagents into picolitre or nanolitre volumes. However, DNA-based assays typically require processing of samples on the scale of tens of microlitres, with the detection of as few as one or as many as a hundred thousand fragments. Through the present work, we introduce a flow-focusing microfluidic device that produces 120 picolitre core-shell beads, which are assembled into a monolayer in a Petri dish for visualization and analysis. The bead assembly is subjected to polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the DNA concentration of the sample. We use a low-cost 21-megapixel digital camera and macro lens to capture wide-field fluorescence images with a 10-30 mm2 field-of-view at magnifications ranging from 5× to 2.5×. A customised Python script analysed the acquired images. Our study demonstrates the ability to perform digital PCR analysis of the entire bead assembly through end-point imaging and compare the results with those obtained through RT-qPCR.


Assuntos
Reação em Cadeia da Polimerase , DNA/análise , DNA/genética , Reação em Cadeia da Polimerase/economia , Reação em Cadeia da Polimerase/métodos
5.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984904

RESUMO

Core-shell particles are micro- or nanoparticles with solid, liquid, or gas cores encapsulated by protective solid shells. The unique composition of core and shell materials imparts smart properties on the particles. Core-shell particles are gaining increasing attention as tuneable and versatile carriers for pharmaceutical and biomedical applications including targeted drug delivery, controlled drug release, and biosensing. This review provides an overview of fabrication methods for core-shell particles followed by a brief discussion of their application and a detailed analysis of their manipulation including assembly, sorting, and triggered release. We compile current methodologies employed for manipulation of core-shell particles and demonstrate how existing methods of assembly and sorting micro/nanospheres can be adopted or modified for core-shell particles. Various triggered release approaches for diagnostics and drug delivery are also discussed in detail.

6.
Lab Chip ; 22(8): 1508-1518, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35344578

RESUMO

A liquid marble is a liquid droplet coated with a shell of microparticles. Liquid marbles have served as a unique microreactor for chemical reactions and cell culture. Mixing is an essential task for liquid marbles as a microreactor. However, the potential of liquid marble-based microreactors is significantly limited due to the lack of effective mixing strategies. Most mixing strategies used manual and contact-based actuation schemes. This paper reports the development of a manipulation scheme that induces fluid motion into a liquid marble, leading to enhanced mixing. By inducing rotation on a horizontal axis, we significantly increased the mixing rate by 27.6 times compared to a non-actuated liquid marble and reduced the reaction time by more than 10 times. The proposed method provides a simple, continuous, precise, and controllable high-performance mixing strategy on a liquid marble platform.


Assuntos
Carbonato de Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA